convolutional_variational_autoencoder_fashion_mnist-checkpoint.ipynb (Source)

Preamble

In [1]:
%matplotlib notebook
In [2]:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

from keras import backend as K

from keras.layers import (Input, Lambda, Layer, Reshape, Flatten, 
                          Add, Multiply)
from keras.layers import Dense, Conv2D, Conv2DTranspose
from keras.models import Model, Sequential
from keras.datasets import fashion_mnist
Using TensorFlow backend.
In [3]:
import pandas as pd

from matplotlib.ticker import FormatStrFormatter
from keras.utils.vis_utils import model_to_dot, plot_model
from IPython.display import SVG

Notebook Configuration

In [4]:
np.set_printoptions(precision=2,
                    edgeitems=3,
                    linewidth=80,
                    suppress=True)
In [5]:
'TensorFlow version: ' + K.tf.__version__
Out[5]:
'TensorFlow version: 1.4.0'

Dataset (MNIST)

In [6]:
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train = np.expand_dims(x_train, axis=-1) / 255.
x_test = np.expand_dims(x_test, axis=-1) / 255.
Constant definitions
In [7]:
# input image dimensions
img_rows, img_cols, img_chns = x_train.shape[1:]

# number of convolutional filters to use
filters = 64

original_img_size = (img_rows, img_cols, img_chns)
upsample_shape = (img_rows // 2, img_cols // 2, filters)

epsilon_std = 1.0
latent_dim = 2
intermediate_dim = 128
batch_size = 100
epochs = 30

Model specification

Encoder

Convolutional Hidden Layers

In [8]:
encoder_conv_hidden_layers = Sequential([
    Conv2D(img_chns, input_shape=original_img_size,
           kernel_size=2, padding='same', 
           activation='relu'),
    Conv2D(filters, kernel_size=2, padding='same', 
           activation='relu', strides=(2, 2)),
    Conv2D(filters,
           kernel_size=3, padding='same', 
           activation='relu', strides=1),
    Conv2D(filters, kernel_size=3, padding='same', 
           activation='relu', strides=1),
    Flatten(),
    Dense(intermediate_dim, activation='relu')
], name='conv_hidden_layers')
In [9]:
SVG(model_to_dot(encoder_conv_hidden_layers, 
                 show_layer_names=False, 
                 show_shapes=True).create(prog='dot', format='svg'))
Out[9]:
G 140129435347992 InputLayerinput:output:(None, 28, 28, 1)(None, 28, 28, 1)140129435345640 Conv2Dinput:output:(None, 28, 28, 1)(None, 28, 28, 1)140129435347992->140129435345640 140129435346144 Conv2Dinput:output:(None, 28, 28, 1)(None, 14, 14, 64)140129435345640->140129435346144 140129435346536 Conv2Dinput:output:(None, 14, 14, 64)(None, 14, 14, 64)140129435346144->140129435346536 140129435346928 Conv2Dinput:output:(None, 14, 14, 64)(None, 14, 14, 64)140129435346536->140129435346928 140129435347320 Flatteninput:output:(None, 14, 14, 64)(None, 12544)140129435346928->140129435347320 140129435347488 Denseinput:output:(None, 12544)(None, 128)140129435347320->140129435347488
In [10]:
# plot_model(model=encoder_conv_hidden_layers, 
#            show_layer_names=False, 
#            show_shapes=True,
#            to_file='../../images/vae/encoder_conv_layers.svg')

Inference Network

In [11]:
class KLDivergenceLayer(Layer):

    """ Identity transform layer that adds KL divergence
    to the final model loss.
    """

    def __init__(self, *args, **kwargs):
        self.is_placeholder = True
        super(KLDivergenceLayer, self).__init__(*args, **kwargs)

    def call(self, inputs):

        mu, log_var = inputs

        kl_batch = - .5 * K.sum(1 + log_var -
                                K.square(mu) -
                                K.exp(log_var), axis=-1)

        self.add_loss(K.mean(kl_batch), inputs=inputs)

        return inputs
In [12]:
x = Input(shape=original_img_size, name='x')

h = encoder_conv_hidden_layers(x)

z_mu = Dense(latent_dim, name='mu')(h)
z_log_var = Dense(latent_dim, name='log_var')(h)
z_mu, z_log_var = KLDivergenceLayer(name='kl')([z_mu, z_log_var])
z_sigma = Lambda(lambda t: K.exp(.5*t), name='sigma')(z_log_var)

Reparameterization trick

In [13]:
eps = Input(name='epsilon', tensor=K.random_normal(shape=(K.shape(x)[0], latent_dim)))
z_eps = Multiply(name='z_eps')([z_sigma, eps])
z = Add(name='z')([z_mu, z_eps])

Finalizing the Encoder

In [14]:
encoder = Model(inputs=[x, eps], outputs=z, name='encoder')
SVG(model_to_dot(encoder, show_shapes=True)
    .create(prog='dot', format='svg'))
Out[14]:
G 140129433201576 x: InputLayerinput:output:(None, 28, 28, 1)(None, 28, 28, 1)140129435347880 conv_hidden_layers: Sequentialinput:output:(None, 28, 28, 1)(None, 128)140129433201576->140129435347880 140130637259832 mu: Denseinput:output:(None, 128)(None, 2)140129435347880->140130637259832 140129433819176 log_var: Denseinput:output:(None, 128)(None, 2)140129435347880->140129433819176 140129433202472 kl: KLDivergenceLayerinput:output:[(None, 2), (None, 2)][(None, 2), (None, 2)]140130637259832->140129433202472 140129433819176->140129433202472 140129433549232 sigma: Lambdainput:output:(None, 2)(None, 2)140129433202472->140129433549232 140129433858848 z: Addinput:output:[(None, 2), (None, 2)](None, 2)140129433202472->140129433858848 140129432491064 z_eps: Multiplyinput:output:[(None, 2), (None, 2)](None, 2)140129433549232->140129432491064 140129432967208 epsilon: InputLayerinput:output:(None, 2)(None, 2)140129432967208->140129432491064 140129432491064->140129433858848
In [15]:
# plot_model(model=encoder, 
#            show_layer_names=True, 
#            show_shapes=True,
#            to_file='../../images/vae/encoder_conv.svg')

Decoder

In [16]:
decoder = Sequential([
    Dense(intermediate_dim, input_dim=latent_dim, activation='relu'),
    Dense(np.prod(upsample_shape), activation='relu'),
    Reshape(upsample_shape),
    Conv2DTranspose(filters, kernel_size=3, padding='same', strides=1,
                    activation='relu'),
    Conv2DTranspose(filters, kernel_size=3, padding='same', strides=1,
                    activation='relu'),
    Conv2DTranspose(filters, kernel_size=3, padding='valid', strides=2, 
                    activation='relu'),
    Conv2D(img_chns, kernel_size=2, padding='valid', 
           activation='sigmoid')
], name='decoder')
In [17]:
SVG(model_to_dot(decoder, show_layer_names=False, show_shapes=True)
    .create(prog='dot', format='svg'))
Out[17]:
G 140129431827176 InputLayerinput:output:(None, 2)(None, 2)140129432066312 Denseinput:output:(None, 2)(None, 128)140129431827176->140129432066312 140129433200456 Denseinput:output:(None, 128)(None, 12544)140129432066312->140129433200456 140129432067040 Reshapeinput:output:(None, 12544)(None, 14, 14, 64)140129433200456->140129432067040 140129432067096 Conv2DTransposeinput:output:(None, 14, 14, 64)(None, 14, 14, 64)140129432067040->140129432067096 140129432067488 Conv2DTransposeinput:output:(None, 14, 14, 64)(None, 14, 14, 64)140129432067096->140129432067488 140129432067880 Conv2DTransposeinput:output:(None, 14, 14, 64)(None, 29, 29, 64)140129432067488->140129432067880 140129431826672 Conv2Dinput:output:(None, 29, 29, 64)(None, 28, 28, 1)140129432067880->140129431826672
In [18]:
# plot_model(decoder, 
#            show_layer_names=False, 
#            show_shapes=True,
#            to_file='../../images/vae/decoder_conv.svg')
In [19]:
x_pred = decoder(z)

Finalizing the VAE

In [20]:
def nll(y_true, y_pred):
    """ Negative log likelihood. """

    # keras.losses.binary_crossentropy give the mean
    # over the last axis. we require the sum
    return K.sum(K.binary_crossentropy(y_true, y_pred), axis=(1, 2, 3))
In [21]:
vae = Model(inputs=[x, eps], outputs=x_pred, name='vae')
vae.compile(optimizer='rmsprop', loss=nll)
In [22]:
SVG(model_to_dot(vae, show_layer_names=True, show_shapes=True)
    .create(prog='dot', format='svg'))
Out[22]:
G 140129433201576 x: InputLayerinput:output:(None, 28, 28, 1)(None, 28, 28, 1)140129435347880 conv_hidden_layers: Sequentialinput:output:(None, 28, 28, 1)(None, 128)140129433201576->140129435347880 140130637259832 mu: Denseinput:output:(None, 128)(None, 2)140129435347880->140130637259832 140129433819176 log_var: Denseinput:output:(None, 128)(None, 2)140129435347880->140129433819176 140129433202472 kl: KLDivergenceLayerinput:output:[(None, 2), (None, 2)][(None, 2), (None, 2)]140130637259832->140129433202472 140129433819176->140129433202472 140129433549232 sigma: Lambdainput:output:(None, 2)(None, 2)140129433202472->140129433549232 140129433858848 z: Addinput:output:[(None, 2), (None, 2)](None, 2)140129433202472->140129433858848 140129432491064 z_eps: Multiplyinput:output:[(None, 2), (None, 2)](None, 2)140129433549232->140129432491064 140129432967208 epsilon: InputLayerinput:output:(None, 2)(None, 2)140129432967208->140129432491064 140129432491064->140129433858848 140129431827008 decoder: Sequentialinput:output:(None, 2)(None, 28, 28, 1)140129433858848->140129431827008
In [23]:
# plot_model(vae, show_layer_names=True, show_shapes=True,
#            to_file='../../images/vae/vae_conv.svg')

Model fitting

In [24]:
hist = vae.fit(
    x_train,
    x_train,
    shuffle=True,
    epochs=epochs,
    batch_size=batch_size,
    validation_data=(x_test, x_test)
)
Train on 60000 samples, validate on 10000 samples
Epoch 1/30
60000/60000 [==============================] - 19s 325us/step - loss: 298.5929 - val_loss: 277.3748
Epoch 2/30
60000/60000 [==============================] - 18s 300us/step - loss: 273.9881 - val_loss: 269.4108
Epoch 3/30
60000/60000 [==============================] - 19s 313us/step - loss: 268.3608 - val_loss: 266.5654
Epoch 4/30
60000/60000 [==============================] - 19s 314us/step - loss: 265.3001 - val_loss: 266.4685
Epoch 5/30
60000/60000 [==============================] - 19s 314us/step - loss: 263.4144 - val_loss: 265.8716
Epoch 6/30
60000/60000 [==============================] - 18s 308us/step - loss: 262.1231 - val_loss: 264.1086
Epoch 7/30
60000/60000 [==============================] - 19s 309us/step - loss: 261.0246 - val_loss: 261.5969
Epoch 8/30
60000/60000 [==============================] - 19s 324us/step - loss: 260.1593 - val_loss: 262.0315
Epoch 9/30
60000/60000 [==============================] - 19s 322us/step - loss: 259.3281 - val_loss: 263.5391
Epoch 10/30
60000/60000 [==============================] - 20s 330us/step - loss: 258.7873 - val_loss: 260.1718
Epoch 11/30
60000/60000 [==============================] - 19s 317us/step - loss: 258.1754 - val_loss: 261.1290
Epoch 12/30
60000/60000 [==============================] - 19s 315us/step - loss: 257.8505 - val_loss: 260.0079
Epoch 13/30
60000/60000 [==============================] - 19s 319us/step - loss: 257.4883 - val_loss: 259.0826
Epoch 14/30
60000/60000 [==============================] - 19s 315us/step - loss: 257.2271 - val_loss: 258.5644
Epoch 15/30
60000/60000 [==============================] - 19s 319us/step - loss: 256.8989 - val_loss: 259.1926
Epoch 16/30
60000/60000 [==============================] - 19s 320us/step - loss: 256.4425 - val_loss: 258.5764
Epoch 17/30
60000/60000 [==============================] - 19s 317us/step - loss: 256.3132 - val_loss: 258.0871
Epoch 18/30
60000/60000 [==============================] - 19s 316us/step - loss: 256.1785 - val_loss: 258.6703
Epoch 19/30
60000/60000 [==============================] - 19s 316us/step - loss: 255.9352 - val_loss: 259.9574
Epoch 20/30
60000/60000 [==============================] - 19s 316us/step - loss: 255.8114 - val_loss: 257.6851
Epoch 21/30
60000/60000 [==============================] - 19s 316us/step - loss: 255.8960 - val_loss: 257.9040
Epoch 22/30
60000/60000 [==============================] - 19s 316us/step - loss: 255.4902 - val_loss: 258.5125
Epoch 23/30
60000/60000 [==============================] - 19s 317us/step - loss: 255.5210 - val_loss: 259.9670
Epoch 24/30
60000/60000 [==============================] - 19s 317us/step - loss: 255.5815 - val_loss: 260.8567
Epoch 25/30
60000/60000 [==============================] - 19s 317us/step - loss: 255.3444 - val_loss: 263.1730
Epoch 26/30
60000/60000 [==============================] - 19s 317us/step - loss: 255.2293 - val_loss: 259.1209
Epoch 27/30
60000/60000 [==============================] - 19s 317us/step - loss: 255.0200 - val_loss: 259.3938
Epoch 28/30
60000/60000 [==============================] - 19s 319us/step - loss: 254.9191 - val_loss: 258.6747
Epoch 29/30
60000/60000 [==============================] - 19s 317us/step - loss: 255.0138 - val_loss: 257.3900
Epoch 30/30
60000/60000 [==============================] - 19s 318us/step - loss: 254.8021 - val_loss: 257.8941

Model Evaluation

In [25]:
golden_size = lambda width: (width, 2. * width / (1 + np.sqrt(5)))

NELBO

In [26]:
fig, ax = plt.subplots(figsize=golden_size(6))

hist_df = pd.DataFrame(hist.history)
hist_df.plot(ax=ax)

ax.set_ylabel('NELBO')
ax.set_xlabel('# epochs')

plt.savefig('../../images/vae/nelbo_conv_fashion.svg', format='svg')
plt.show()

Observed space manifold

In [27]:
# display a 2D manifold of the images
n = 15  # figure with 15x15 images
digit_size = 28
quantile_min = 0.01
quantile_max = 0.99

# linearly spaced coordinates on the unit square were transformed
# through the inverse CDF (ppf) of the Gaussian to produce values
# of the latent variables z, since the prior of the latent space
# is Gaussian

z1 = norm.ppf(np.linspace(quantile_min, quantile_max, n))
z2 = norm.ppf(np.linspace(quantile_max, quantile_min, n))
z_grid = np.dstack(np.meshgrid(z1, z2))
In [28]:
x_pred_grid = decoder.predict(z_grid.reshape(n*n, latent_dim)) \
                     .reshape(n, n, img_rows, img_cols)
In [29]:
fig, ax = plt.subplots(figsize=(6, 6))

ax.imshow(np.block(list(map(list, x_pred_grid))), cmap='gray')

ax.set_xticks(np.arange(0, n*img_rows, img_rows) + .5 * img_rows)
ax.set_xticklabels(map('{:.2f}'.format, z1), rotation=90)

ax.set_yticks(np.arange(0, n*img_cols, img_cols) + .5 * img_cols)
ax.set_yticklabels(map('{:.2f}'.format, z2))

ax.set_xlabel('$z_1$')
ax.set_ylabel('$z_2$')

plt.savefig('../../images/vae/result_manifold_conv_fashion.png')
plt.show()
In [30]:
# deterministic test time encoder
test_encoder = Model(x, z_mu)

# display a 2D plot of the digit classes in the latent space
z_test = test_encoder.predict(x_test, batch_size=batch_size)
In [31]:
fig, ax = plt.subplots(figsize=(6, 5))

cbar = ax.scatter(z_test[:, 0], z_test[:, 1], c=y_test,
                   alpha=.4, s=3**2, cmap='viridis')
fig.colorbar(cbar, ax=ax)

ax.set_xlim(2.*norm.ppf((quantile_min, quantile_max)))
ax.set_ylim(2.*norm.ppf((quantile_min, quantile_max)))

ax.set_xlabel('$z_1$')
ax.set_ylabel('$z_2$')

plt.savefig('../../images/vae/result_latent_space_conv_fashion.png')
plt.show()
In [32]:
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 4.5))

ax1.imshow(np.block(list(map(list, x_pred_grid))), cmap='gray')

ax1.set_xticks(np.arange(0, n*img_rows, img_rows) + .5 * img_rows)
ax1.set_xticklabels(map('{:.2f}'.format, z1), rotation=90)

ax1.set_yticks(np.arange(0, n*img_cols, img_cols) + .5 * img_cols)
ax1.set_yticklabels(map('{:.2f}'.format, z2))

ax.set_xlabel('$z_1$')
ax.set_ylabel('$z_2$')

cbar = ax2.scatter(z_test[:, 0], z_test[:, 1], c=y_test,
                   alpha=.4, s=3**2, cmap='viridis')
fig.colorbar(cbar, ax=ax2)

ax2.set_xlim(norm.ppf((quantile_min, quantile_max)))
ax2.set_ylim(norm.ppf((quantile_min, quantile_max)))

ax2.set_xlabel('$z_1$')
ax2.set_ylabel('$z_2$')

plt.savefig('../../images/vae/result_combined_conv_fashion.png')
plt.show()