Variational Inference with Implicit Approximate Inference Models (WIP Pt. 9)

In [1]:
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
In [2]:
import numpy as np
import keras.backend as K

import matplotlib.pyplot as plt
import seaborn as sns

from scipy.stats import logistic, multivariate_normal, norm
from scipy.special import expit

from keras.models import Model, Sequential
from keras.layers import Activation, Dense, Dot, Input
from keras.optimizers import Adam
from keras.utils.vis_utils import model_to_dot

from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation

from IPython.display import HTML, SVG, display_html
from tqdm import tnrange, tqdm_notebook
Using TensorFlow backend.
In [3]:
# display animation inline
plt.rc('animation', html='html5')
plt.style.use('seaborn-notebook')
sns.set_context('notebook')
In [4]:
np.set_printoptions(precision=2,
                    edgeitems=3,
                    linewidth=80,
                    suppress=True)
In [5]:
K.tf.__version__
Out[5]:
'1.2.1'
In [6]:
LATENT_DIM = 2
NOISE_DIM = 3
BATCH_SIZE = 200
PRIOR_VARIANCE = 2.
LEARNING_RATE = 3e-3
PRETRAIN_EPOCHS = 60

Bayesian Logistic Regression (Synthetic Data)

In [7]:
w_min, w_max = -5, 5
In [8]:
w1, w2 = np.mgrid[w_min:w_max:300j, w_min:w_max:300j]
In [9]:
w_grid = np.dstack((w1, w2))
w_grid.shape
Out[9]:
(300, 300, 2)
In [10]:
prior = multivariate_normal(mean=np.zeros(LATENT_DIM), 
                            cov=PRIOR_VARIANCE)
In [11]:
log_prior = prior.logpdf(w_grid)
log_prior.shape
Out[11]:
(300, 300)
In [12]:
log_prior = -np.sum(w_grid**2, axis=2)/2/PRIOR_VARIANCE
log_prior.shape
Out[12]:
(300, 300)
In [13]:
fig, ax = plt.subplots(figsize=(5, 5))

ax.contourf(w1, w2, log_prior, cmap='magma')

ax.set_xlabel('$w_1$')
ax.set_ylabel('$w_2$')

ax.set_xlim(w_min, w_max)
ax.set_ylim(w_min, w_max)

plt.show()
In [14]:
x1 = np.array([ 1.5,  1.])
x2 = np.array([-1.5,  1.])
x3 = np.array([  .5, -1.])
In [15]:
X = np.vstack((x1, x2, x3))
X.shape
Out[15]:
(3, 2)
In [16]:
y1 = 1
y2 = 1
y3 = 0
In [17]:
y = np.stack((y1, y2, y3))
y.shape
Out[17]:
(3,)
In [18]:
def log_likelihood(w, x, y):
    # equiv. to negative binary cross entropy
    return np.log(expit(np.dot(w.T, x)*(-1)**(1-y)))
In [19]:
llhs = log_likelihood(w_grid.T, X.T, y)
llhs.shape
Out[19]:
(300, 300, 3)
In [20]:
fig, axes = plt.subplots(ncols=3, nrows=1, figsize=(6, 2))
fig.tight_layout()

for i, ax in enumerate(axes):
    
    ax.contourf(w1, w2, llhs[::,::,i], cmap=plt.cm.magma)

    ax.set_xlim(w_min, w_max)
    ax.set_ylim(w_min, w_max)
    
    ax.set_title('$p(y_{{{0}}} \mid x_{{{0}}}, w)$'.format(i+1))
    ax.set_xlabel('$w_1$')    
    
    if not i:
        ax.set_ylabel('$w_2$')

plt.show()
In [21]:
fig, ax = plt.subplots(figsize=(5, 5))

ax.contourf(w1, w2, np.sum(llhs, axis=2), 
                cmap=plt.cm.magma)

ax.set_xlabel('$w_1$')
ax.set_ylabel('$w_2$')

ax.set_xlim(w_min, w_max)
ax.set_ylim(w_min, w_max)

plt.show()
In [22]:
fig, ax = plt.subplots(figsize=(5, 5))

ax.contourf(w1, w2, 
            np.exp(log_prior+np.sum(llhs, axis=2)), 
            cmap='magma')

ax.scatter(*X.T, c=y, cmap='coolwarm', marker=',')

ax.set_xlabel('$w_1$')
ax.set_ylabel('$w_2$')

ax.set_xlim(w_min, w_max)
ax.set_ylim(w_min, w_max)

plt.show()

Model Definitions

Density Ratio Estimator (Discriminator) Model

$T_{\psi}(x, z)$

Here we consider

$T_{\psi}(w)$

$T_{\psi} : \mathbb{R}^2 \to \mathbb{R}$

In [23]:
discriminator = Sequential(name='discriminator')
discriminator.add(Dense(10, input_dim=LATENT_DIM, activation='relu'))
discriminator.add(Dense(20, activation='relu'))
discriminator.add(Dense(1, activation=None, name='logit'))
discriminator.add(Activation('sigmoid'))
discriminator.compile(optimizer=Adam(lr=LEARNING_RATE),
                      loss='binary_crossentropy',
                      metrics=['binary_accuracy'])
In [24]:
ratio_estimator = Model(
    inputs=discriminator.inputs, 
    outputs=discriminator.get_layer(name='logit').output)
In [25]:
SVG(model_to_dot(discriminator, show_shapes=True)
    .create(prog='dot', format='svg'))
Out[25]:
G 140532566838016 dense_1_input: InputLayerinput:output:(None, 2)(None, 2)140532566553712 dense_1: Denseinput:output:(None, 2)(None, 10)140532566838016->140532566553712 140532566554384 dense_2: Denseinput:output:(None, 10)(None, 20)140532566553712->140532566554384 140532629958784 logit: Denseinput:output:(None, 20)(None, 1)140532566554384->140532629958784 140532567508640 activation_1: Activationinput:output:(None, 1)(None, 1)140532629958784->140532567508640
In [26]:
w_grid_ratio = ratio_estimator.predict(w_grid.reshape(300*300, 2))
w_grid_ratio = w_grid_ratio.reshape(300, 300)

Initial density ratio, prior to any training

In [27]:
fig, ax = plt.subplots(figsize=(5, 5))

ax.contourf(w1, w2, w_grid_ratio, cmap=plt.cm.magma)

ax.set_xlabel('$w_1$')
ax.set_ylabel('$w_2$')

ax.set_xlim(w_min, w_max)
ax.set_ylim(w_min, w_max)

plt.show()
In [28]:
discriminator.evaluate(prior.rvs(size=5), np.zeros(5))
5/5 [==============================] - 0s
Out[28]:
[1.0519158840179443, 0.0]

Approximate Inference Model

$z_{\phi}(x, \epsilon)$

Here we only consider

$z_{\phi}(\epsilon)$

$z_{\phi}: \mathbb{R}^3 \to \mathbb{R}^2$

In [29]:
inference = Sequential()
inference.add(Dense(10, input_dim=NOISE_DIM, activation='relu'))
inference.add(Dense(20, activation='relu'))
inference.add(Dense(LATENT_DIM, activation=None))
inference.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_3 (Dense)              (None, 10)                40        
_________________________________________________________________
dense_4 (Dense)              (None, 20)                220       
_________________________________________________________________
dense_5 (Dense)              (None, 2)                 42        
=================================================================
Total params: 302
Trainable params: 302
Non-trainable params: 0
_________________________________________________________________

The variational parameters $\phi$ are the trainable weights of the approximate inference model

In [30]:
phi = inference.trainable_weights
phi
Out[30]:
[<tf.Variable 'dense_3/kernel:0' shape=(3, 10) dtype=float32_ref>,
 <tf.Variable 'dense_3/bias:0' shape=(10,) dtype=float32_ref>,
 <tf.Variable 'dense_4/kernel:0' shape=(10, 20) dtype=float32_ref>,
 <tf.Variable 'dense_4/bias:0' shape=(20,) dtype=float32_ref>,
 <tf.Variable 'dense_5/kernel:0' shape=(20, 2) dtype=float32_ref>,
 <tf.Variable 'dense_5/bias:0' shape=(2,) dtype=float32_ref>]